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Abstract: Online query processing for large-scale, incremental data analysis on a distributed stream processing engine 

(DSPE). Our goal is to convert any SQL-like query to an incremental DSPE program automatically. In contrast to other 

approaches, we derive incremental programs that return accurate results, not approximate answers, by retaining a 

minimal state during the query evaluation lifetime and by using a novel incremental evaluation technique, which, at 

each time interval, returns an accurate snapshot answer that depends on the current state and the latest batches of data. 

Our methods can handle many forms of queries on nested data collections, including iterative and nested queries, 

group-by with aggregation, and equi-joins. Finally, we report on a prototype implementation of our framework, called 

MRQL Streaming, running on top of Spark and we experimentally validate the effectiveness of our methods. 
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1. INTRODUCTION 
 

We are living in an age when an explosive amount of data 

is being generated every day. Data from sensors, mobile 

devices, social networking websites, scientific data & 

enterprises – all are contributing to this huge explosion in 

data. This sudden bombardment can be grasped by the fact 

that we have created a vast volume of data in the last two 

years. Big Data- as these large chunks of data is generally 

called- has become one of the hottest research trends 

today. 

Research suggests that tapping the potential of this data 

can benefit businesses, scientific disciplines and the public 

sector – contributing to their economic gains as well as 

development in every sphere. The need is to develop 

efficient systems that can exploit this potential to the 

maximum, keeping in mind the current challenges 

associated with its analysis, structure, scale, timeliness and 

privacy. There has been a shift in the architecture of data-

processing systems today, from the centralized 

architecture to the distributed architecture. Enterprises face 

the challenge of processing these huge chunks of data, and 

have found that none of the existing centralized 

architectures can efficiently handle this huge volume of 

data. These are thus utilizing distributed architectures to 

harness this data. Several solutions to the Big Data 

problem have emerged which includes the Map Reduce 

environment championed by Google which is now 

available open-source in Hadoop. Hadoop‟s distributed 

processing, Map Reduce algorithms and overall 

architecture are a major step towards achieving the 

promised benefits of Big Data. 

Map Reduce & Hadoop are the most widely used models 

used today for Big Data processing. Hadoop is an open 

source large-scale data processing framework that 

supports distributed processing of large chunks of data  

 

 

using simple programming models. The Apache Hadoop 

project consists of the HDFS and Hadoop Map Reduce in 

addition to other modules. The software is modelled to 

harvest upon the processing power of clustered computing 

while managing failures at node level. The Map Reduce 

software framework which was originally introduced by 

Google in 2004 is a programming model, which now 

adopted by Apache Hadoop, consists of splitting the large 

chunks of data, and „Map‟ & „Reduce‟ phases (Fig. 1). 

The Map Reduce framework handles task scheduling, 

monitoring and failures. 

 

 
FIG. 1 MAP REDUCE IN HADOOP 

 

2.LITERATURE SURVEY 

 

Incremental data processing can generally achieve better 

performance and may require less memory than batch 

processing for many data analysis tasks. It can also be 

used for analyzing Big Data incrementally, in batches that 

can fit in memory. Consequently, incremental data 
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processing can also be useful to stream-based applications 

that need to process continuous streams of data in real-

time with low latency, which is not feasible with existing 

batch analysis tools. For example, the Map-Reduce 

framework   which was designed for batch processing, is 

ill-suited for certain Big Data workloads, such as real-time 

analytics, continuous queries, and iterative algorithms. 

New alternative frameworks have emerged that address 

the inherent limitations of the Map-Reduce model and 

perform better for a wider spectrum of workloads. 

Currently, among them, the most promising frameworks 

that seem to be good alternatives to Map-Reduce while 

addressing its drawbacks are Google’s Pregel, Apache 

Spark, and Apache Flink, which are in-memory distributed 

computing systems.  

There are also quite a few emerging distributed stream 

processing engines (DSPEs) that realize online, low-

latency data processing with a series of batch 

computations at small time intervals, using a continuous 

streaming system that processes data as they arrive and 

emits continuous results. To cope with blocking operations 

and unbounded memory requirements, some of these 

systems build on the well-established research on data 

streaming based on sliding windows and incremental 

operators, which includes systems such as Aurora  and 

Telegraph. Currently, among these DSPEs, the most 

popular platforms are Twitter’s (now Apache) Storm, 

Spark’s D-Streams Flink Streaming, Apache S4, and 

Apache Samza . The process of the research into complex 

data basically concerned with the revealing of hidden 

patterns. 
 

Big Data: A Review” describe the big data content, its 

scope, methods, samples, advantages and challenges of 

Data. The critical issue about the Big data is the privacy 

and security. Big data samples describe the review about 

the atmosphere, biological science and research. Life 

sciences etc. By this paper, we can conclude that any 

organization in any industry having big data can take the 

benefit from its careful analysis for the problem solving 

purpose. Using Knowledge Discovery from the Big data 

easy to get the information from the complicated data sets  

The overall Evaluation describe that the data is increasing 

and becoming complex. The challenge is not only to 

collect and manage the data also how to extract the useful 

information from that collected data. According to the 

Intel IT Center, there are many challenges related to Big 

Data which are data growth, data infrastructure, data 

variety, data visualization, data velocity. 

A Big Data implementation based on Grid Computing”, 

Grid Computing offered the advantage about the storage 

capabilities and the processing power and the Hadoop 

technology is used for the implementation purpose. Grid 

Computing provides the concept of distributed computing. 

The benefit of Grid computing center is the high storage 

capability and the high processing power. Grid Computing 

makes the big contributions among the scientific research, 

help the scientists to analyze and store the large and 

complex data. 

Big data analytics define the analysis of large amount of 

data to get the useful information and uncover the hidden 

patterns. Big data analytics refers to the Mapreduce 

Framework which is developed by the Google. Apache 

Hadoop is the open source platform which is used for the 

purpose of implementation of Google’s Mapreduce Model. 

 

3.PROPOSED METHODOLGY 

 

Data is conceptually record-oriented in the Hadoop 

programming framework. Individual input files are broken 

into lines or into other formats specific to the application 

logic. Each process running on a node in the cluster then 

processes a subset of these records. The Hadoop 

framework then schedules these processes in proximity to 

the location of data/records using knowledge from the 

distributed file system.  
 

 Since files are spread across the distributed file system as 

chunks, each compute process running on a node operates 

on a subset of the data. Which data operated on by a node 

is chosen based on its locality to the node: most data is 

read from the local disk straight into the CPU, alleviating 

strain on network bandwidth and preventing unnecessary 

network transfers. This strategy of moving computation to 

the data, instead of moving the data to the computation 

allows Hadoop to achieve high data locality which in turn 

results in high performance.  

 

K Means Clustering – Pseudo code 

K-Means is a simple learning algorithm for clustering 

analysis. The goal of K-Means algorithm is to find the best 

division of n entities in k groups, so that the total distance 

between the group’s members and its corresponding 

centroid, representative of the group, is minimized 

The k-means algorithm is used for partitioning where each 

cluster’s centre is represented by the mean value of the 

objects in the cluster   

 

K Means Clustering – Pseudo code 

Pseudo code 

1. Begin with n clusters, each containing one object and 

we will number the clusters 1 through n. 

2. Compute the between-cluster distance D(r, s) as the 

between-object distance of the two objects in r and s 

respectively, r, s =1, 2, …, n. Let the square matrix D = 

(D(r, s)). If the objects are represented by vectors, we can 

use the Euclidean distance. 

3. Next, find the most similar pair of clusters r and s ,such 

that the distance, D(r, s), is minimum among all the 

pairwise distances. 

4. Merge r and s to a new cluster t and compute the 

between-cluster distance D(t, k) for any existing cluster k 

≠ r, s . Once the distances are obtained, delete the rows 

and columns corresponding to the old cluster r and s in the 

D matrix, since r and s do not exist anymore. Then add a 

new row and column in D corresponding to cluster t. 

5. Repeat Step 3 a total of n − 1 times until there is only 

one cluster left. 
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Parallel K-Means Algorithm Based on MapReduce 

In this section we present the main design for Parallel K-

Means (PKMeans) based on Map Reduce. Firstly, we give 

a brief overview of the k-means algorithm and analyze the 

parallel parts and serial parts in the algorithms. Then we 

explain how the necessary computations can be formalized 

as map and reduce operations in detail. 

 

PKMeans Based on Map Reduce 

As the analysis above, PKMeans algorithm needs one kind 

of MapReduce job. The map function performs the 

procedure of assigning each sample to the closest center 

while the reduce function performs the procedure of 

updating the new centers. In order to decrease the cost of 

network communication, a combiner function is developed 

to deal with partial combination of the intermediate values 

with the same key within the same map task. 

Map-function The input dataset is stored on HDFS as a 

sequence file of<key, value>pairs, each of which 

represents a record in the dataset. The key is the offset in 

bytes of this record to the start point of the data file, and 

the value is a string of the content of this record. The 

dataset is split and globally broadcast to all mappers. 

Consequently, the distance computations are parallel 

executed. For each map task, PKMeans construct a global 

variant centers which is an array containing the 

information about centers of the clusters. Given the 

information, a mapper  can compute the closest center 

point for each sample. The intermediate values are then 

composed of two parts: the index of the closest center 

point and the sample information. The pseudocode of map 

function is shown in Algorithm.  
 

MapReduce Programming Model MapReduce is a 

software framework proposed by Google, which is a basis 

computational model of current cloud computing platform. 

Its main function is to handle massive amounts of data. 

Because of its simplicity, MapReduce can effectively deal 

with machine failures and easily expand the number of 

system nodes. MapReduce provides a distributed approach 

to process massive data distributed on a large -scale 

computer clusters. The input data is stored in the 

distributed file system (HDFS), MapReduce adopts a 

divide and conquer method to evenly divided the inputted 

large data sets into small data sets, and then processed on 

different node, which has achieved parallelism. 

In the MapReduce programming model, data is seen as a 

series of key value pairs like , as shown in Figure 1, the 

workflow of MapReduce consists of three phases: Map, 

Shuffle, and Reduce. Users simply write map and reduce 

functions. In the Map phase, a map task corresponds to a 

node in the cluster, as the other word, multiple map tasks 

are be running in parallel at the same time in a cluster. 

Each map call is given a key-value pair (k1,v1) and 

produces a list of (k2,v2) pairs. The output of the map 

calls is transferred to the reduce nodes (shuffle phase).  

All the intermediate records with the same intermediate 

key (k2) are sent to the same reducer node. At each reduce 

node, the received intermediate records are sorted and 

grouped (all the intermediate records with the same key 

form a single group). Each group is processed in a single 

reduce call. The data processing [4-6] can be summarized 

as follows: Map (k1, v1) −→ list(k2, v2) 

 Reduce (k2, list(v2)) −→ list(k3, v3) 

 

4. IMPLEMENTATION DETAILS 

 

Distributed data intensive computing To store, manage, 

access, and process vast amount of data represents a 

fundamental requirement and an immense challenge in 

order to satisfy needs to search, analyze, mine, and 

visualize the data and information. Data intensive 

computing is intended to address this need. 

Google File System the Google File System (GFS) is a 

proprietary Distributed File System developed by Google. 

It is designed (Figure 1) to provide efficient, reliable 

access to data using large clusters of commodity hardware. 

 

The files are huge and divided into chunks of 64 

megabytes. Most files are mutated by appending new data 

rather than overwriting existing data: once written, the 

files are only read and often only sequentially. This DFS is 

best suited for scenarios in which many large files are 

created once but read many times. The GFS is optimized 

to run on computing clusters where the nodes are cheap 

computers. 

 

Hence, there is a need for precautions against the high 

failure rate of individual nodes and data loss. In the 

Google file system there can be 100 to 1000 PCs in a 

cluster can be used. 

1) Chunkserver Architecture Server 

• Stores 64 MB file chunks on local disk using standard 

Linux filesystem, each with version number and checksum 

• Read/write requests specify chunk handle and byte range 

• Chunks replicated on configurable number of chunk 

servers (default: 3) 

• No caching of file data 

2) Client 

• Issues control (metadata) requests to master server 

• Issues data requests directly to chunkservers 

• Caches metadata 

• Does no caching of data   No consistency hence 

difficulties among clients   Streaming reads (read once) 

and append writes (write once) don’t benefit much from 

caching at Client 
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Tools/Technology is to be used 

Big Data has emerged because we are living in a society 

which makes increasing use of data intensive technologies. 

One current feature of big data is the difficulty working 

with it using relational databases and desktop 

statistics/visualization packages, requiring instead 

"massively parallel software running on tens, hundreds, or 

even thousands of servers". The various challenges faced 

in large data management include – scalability, 

unstructured data, accessibility, real time analytics, fault 

tolerance and many more. In addition to variations in the 

amount of data stored in different sectors, the types of data 

generated and stored—i.e., whether the data encodes 

video, images, audio, or text/numeric information—also 

differ markedly from industry to industry. 

Big data requires exceptional technologies to efficiently 

process large quantities of data within tolerable elapsed 

times. Technologies being applied to big data include 

massively parallel processing (MPP) databases, data 

mining grids, distributed file systems, distributed 

databases, cloud computing platforms, the Internet, and 

scalable storage systems. Real or near-real time 

information delivery is one of the defining characteristics 

of Big Data Analytics. Latency is therefore avoided 

whenever and wherever possible. A wide variety of 

techniques and technologies has been developed and 

adapted to aggregate, manipulate, analyze, and visualize 

big data. These techniques and technologies draw from 

several fields including statistics, computer science, 

applied mathematics, and economics. This means that an 

organization that intends to derive value from big data has 

to adopt a flexible, multidisciplinary approach. 

 

5. CONCULSION 

 

We propose general, sound methods to transform batch 

queries to incremental queries. The first step in our 

approach is to transform a query so that it propagates the 

join and group-by keys to the query output. This technique 

is known as lineage tracking .That way, the values in the 

query output are grouped by a key combination, which 

corresponds the join and group-by keys used in deriving 

these values during query evaluation. 
 

 If we also group the new data in the same way, then 

computations on current data can be combined with the 

computations on the new data by joining the data on these 

keys. This approach requires that we can combine 

computations on data that have the same lineage to derive 

incremental results. In our framework, this task is 

accomplished by transforming a query to a ’monoid 

homomorphism’ by extracting the non-homomorphic parts 

of the query outwards, using algebraic transformation 

rules, and combining them to form an answer function, 

which is detached from the rest of the query. 
 

We present a general automated method to convert most 

distributed data-analysis queries to incremental stream 

processing programs. 

• Our methods can handle many forms of queries, 

including iterative and nested queries, group-by with 

aggregation, and joins on one-to-many relationships. 

• We report on a prototype implementation of our 

framework using Apache MRQL running on top of 

Apache Spark Streaming. We show the effectiveness of 

our method through experiments on four queries: 

groupBy, join-groupBy, k-means clustering, and 

PageRank. 
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