
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6265 284

Large Data Turns into Batches using MRQL

(Map Reduce Query Language) Technique

Pragati P. Pachghare
1
, Prof. Pravin G. Kulurkar

2

M.Tech CSE, Vidarbha Institute of Engineering, Nagpur
1

H.O.D, CSE, Vidarbha Institute of Engineering, Nagpur
2

Abstract: Online query processing for large-scale, incremental data analysis on a distributed stream processing engine

(DSPE). Our goal is to convert any SQL-like query to an incremental DSPE program automatically. In contrast to other

approaches, we derive incremental programs that return accurate results, not approximate answers, by retaining a

minimal state during the query evaluation lifetime and by using a novel incremental evaluation technique, which, at

each time interval, returns an accurate snapshot answer that depends on the current state and the latest batches of data.

Our methods can handle many forms of queries on nested data collections, including iterative and nested queries,

group-by with aggregation, and equi-joins. Finally, we report on a prototype implementation of our framework, called

MRQL Streaming, running on top of Spark and we experimentally validate the effectiveness of our methods.

Keywords: Outlier detection, Stream data mining, Local outlier, Memory efficiency.

1. INTRODUCTION

We are living in an age when an explosive amount of data

is being generated every day. Data from sensors, mobile

devices, social networking websites, scientific data &

enterprises – all are contributing to this huge explosion in

data. This sudden bombardment can be grasped by the fact

that we have created a vast volume of data in the last two

years. Big Data- as these large chunks of data is generally

called- has become one of the hottest research trends

today.

Research suggests that tapping the potential of this data

can benefit businesses, scientific disciplines and the public

sector – contributing to their economic gains as well as

development in every sphere. The need is to develop

efficient systems that can exploit this potential to the

maximum, keeping in mind the current challenges

associated with its analysis, structure, scale, timeliness and

privacy. There has been a shift in the architecture of data-

processing systems today, from the centralized

architecture to the distributed architecture. Enterprises face

the challenge of processing these huge chunks of data, and

have found that none of the existing centralized

architectures can efficiently handle this huge volume of

data. These are thus utilizing distributed architectures to

harness this data. Several solutions to the Big Data

problem have emerged which includes the Map Reduce

environment championed by Google which is now

available open-source in Hadoop. Hadoop‟s distributed

processing, Map Reduce algorithms and overall

architecture are a major step towards achieving the

promised benefits of Big Data.

Map Reduce & Hadoop are the most widely used models

used today for Big Data processing. Hadoop is an open

source large-scale data processing framework that

supports distributed processing of large chunks of data

using simple programming models. The Apache Hadoop

project consists of the HDFS and Hadoop Map Reduce in

addition to other modules. The software is modelled to

harvest upon the processing power of clustered computing

while managing failures at node level. The Map Reduce

software framework which was originally introduced by

Google in 2004 is a programming model, which now

adopted by Apache Hadoop, consists of splitting the large

chunks of data, and „Map‟ & „Reduce‟ phases (Fig. 1).

The Map Reduce framework handles task scheduling,

monitoring and failures.

FIG. 1 MAP REDUCE IN HADOOP

2.LITERATURE SURVEY

Incremental data processing can generally achieve better

performance and may require less memory than batch

processing for many data analysis tasks. It can also be

used for analyzing Big Data incrementally, in batches that

can fit in memory. Consequently, incremental data

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6265 285

processing can also be useful to stream-based applications

that need to process continuous streams of data in real-

time with low latency, which is not feasible with existing

batch analysis tools. For example, the Map-Reduce

framework which was designed for batch processing, is

ill-suited for certain Big Data workloads, such as real-time

analytics, continuous queries, and iterative algorithms.

New alternative frameworks have emerged that address

the inherent limitations of the Map-Reduce model and

perform better for a wider spectrum of workloads.

Currently, among them, the most promising frameworks

that seem to be good alternatives to Map-Reduce while

addressing its drawbacks are Google’s Pregel, Apache

Spark, and Apache Flink, which are in-memory distributed

computing systems.

There are also quite a few emerging distributed stream

processing engines (DSPEs) that realize online, low-

latency data processing with a series of batch

computations at small time intervals, using a continuous

streaming system that processes data as they arrive and

emits continuous results. To cope with blocking operations

and unbounded memory requirements, some of these

systems build on the well-established research on data

streaming based on sliding windows and incremental

operators, which includes systems such as Aurora and

Telegraph. Currently, among these DSPEs, the most

popular platforms are Twitter’s (now Apache) Storm,

Spark’s D-Streams Flink Streaming, Apache S4, and

Apache Samza . The process of the research into complex

data basically concerned with the revealing of hidden

patterns.

Big Data: A Review” describe the big data content, its

scope, methods, samples, advantages and challenges of

Data. The critical issue about the Big data is the privacy

and security. Big data samples describe the review about

the atmosphere, biological science and research. Life

sciences etc. By this paper, we can conclude that any

organization in any industry having big data can take the

benefit from its careful analysis for the problem solving

purpose. Using Knowledge Discovery from the Big data

easy to get the information from the complicated data sets

The overall Evaluation describe that the data is increasing

and becoming complex. The challenge is not only to

collect and manage the data also how to extract the useful

information from that collected data. According to the

Intel IT Center, there are many challenges related to Big

Data which are data growth, data infrastructure, data

variety, data visualization, data velocity.

A Big Data implementation based on Grid Computing”,

Grid Computing offered the advantage about the storage

capabilities and the processing power and the Hadoop

technology is used for the implementation purpose. Grid

Computing provides the concept of distributed computing.

The benefit of Grid computing center is the high storage

capability and the high processing power. Grid Computing

makes the big contributions among the scientific research,

help the scientists to analyze and store the large and

complex data.

Big data analytics define the analysis of large amount of

data to get the useful information and uncover the hidden

patterns. Big data analytics refers to the Mapreduce

Framework which is developed by the Google. Apache

Hadoop is the open source platform which is used for the

purpose of implementation of Google’s Mapreduce Model.

3.PROPOSED METHODOLGY

Data is conceptually record-oriented in the Hadoop

programming framework. Individual input files are broken

into lines or into other formats specific to the application

logic. Each process running on a node in the cluster then

processes a subset of these records. The Hadoop

framework then schedules these processes in proximity to

the location of data/records using knowledge from the

distributed file system.

 Since files are spread across the distributed file system as

chunks, each compute process running on a node operates

on a subset of the data. Which data operated on by a node

is chosen based on its locality to the node: most data is

read from the local disk straight into the CPU, alleviating

strain on network bandwidth and preventing unnecessary

network transfers. This strategy of moving computation to

the data, instead of moving the data to the computation

allows Hadoop to achieve high data locality which in turn

results in high performance.

K Means Clustering – Pseudo code

K-Means is a simple learning algorithm for clustering

analysis. The goal of K-Means algorithm is to find the best

division of n entities in k groups, so that the total distance

between the group’s members and its corresponding

centroid, representative of the group, is minimized

The k-means algorithm is used for partitioning where each

cluster’s centre is represented by the mean value of the

objects in the cluster

K Means Clustering – Pseudo code

Pseudo code

1. Begin with n clusters, each containing one object and

we will number the clusters 1 through n.

2. Compute the between-cluster distance D(r, s) as the

between-object distance of the two objects in r and s

respectively, r, s =1, 2, …, n. Let the square matrix D =

(D(r, s)). If the objects are represented by vectors, we can

use the Euclidean distance.

3. Next, find the most similar pair of clusters r and s ,such

that the distance, D(r, s), is minimum among all the

pairwise distances.

4. Merge r and s to a new cluster t and compute the

between-cluster distance D(t, k) for any existing cluster k

≠ r, s . Once the distances are obtained, delete the rows

and columns corresponding to the old cluster r and s in the

D matrix, since r and s do not exist anymore. Then add a

new row and column in D corresponding to cluster t.

5. Repeat Step 3 a total of n − 1 times until there is only

one cluster left.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6265 286

Parallel K-Means Algorithm Based on MapReduce

In this section we present the main design for Parallel K-

Means (PKMeans) based on Map Reduce. Firstly, we give

a brief overview of the k-means algorithm and analyze the

parallel parts and serial parts in the algorithms. Then we

explain how the necessary computations can be formalized

as map and reduce operations in detail.

PKMeans Based on Map Reduce

As the analysis above, PKMeans algorithm needs one kind

of MapReduce job. The map function performs the

procedure of assigning each sample to the closest center

while the reduce function performs the procedure of

updating the new centers. In order to decrease the cost of

network communication, a combiner function is developed

to deal with partial combination of the intermediate values

with the same key within the same map task.

Map-function The input dataset is stored on HDFS as a

sequence file of<key, value>pairs, each of which

represents a record in the dataset. The key is the offset in

bytes of this record to the start point of the data file, and

the value is a string of the content of this record. The

dataset is split and globally broadcast to all mappers.

Consequently, the distance computations are parallel

executed. For each map task, PKMeans construct a global

variant centers which is an array containing the

information about centers of the clusters. Given the

information, a mapper can compute the closest center

point for each sample. The intermediate values are then

composed of two parts: the index of the closest center

point and the sample information. The pseudocode of map

function is shown in Algorithm.

MapReduce Programming Model MapReduce is a

software framework proposed by Google, which is a basis

computational model of current cloud computing platform.

Its main function is to handle massive amounts of data.

Because of its simplicity, MapReduce can effectively deal

with machine failures and easily expand the number of

system nodes. MapReduce provides a distributed approach

to process massive data distributed on a large -scale

computer clusters. The input data is stored in the

distributed file system (HDFS), MapReduce adopts a

divide and conquer method to evenly divided the inputted

large data sets into small data sets, and then processed on

different node, which has achieved parallelism.

In the MapReduce programming model, data is seen as a

series of key value pairs like , as shown in Figure 1, the

workflow of MapReduce consists of three phases: Map,

Shuffle, and Reduce. Users simply write map and reduce

functions. In the Map phase, a map task corresponds to a

node in the cluster, as the other word, multiple map tasks

are be running in parallel at the same time in a cluster.

Each map call is given a key-value pair (k1,v1) and

produces a list of (k2,v2) pairs. The output of the map

calls is transferred to the reduce nodes (shuffle phase).

All the intermediate records with the same intermediate

key (k2) are sent to the same reducer node. At each reduce

node, the received intermediate records are sorted and

grouped (all the intermediate records with the same key

form a single group). Each group is processed in a single

reduce call. The data processing [4-6] can be summarized

as follows: Map (k1, v1) −→ list(k2, v2)

 Reduce (k2, list(v2)) −→ list(k3, v3)

4. IMPLEMENTATION DETAILS

Distributed data intensive computing To store, manage,

access, and process vast amount of data represents a

fundamental requirement and an immense challenge in

order to satisfy needs to search, analyze, mine, and

visualize the data and information. Data intensive

computing is intended to address this need.

Google File System the Google File System (GFS) is a

proprietary Distributed File System developed by Google.

It is designed (Figure 1) to provide efficient, reliable

access to data using large clusters of commodity hardware.

The files are huge and divided into chunks of 64

megabytes. Most files are mutated by appending new data

rather than overwriting existing data: once written, the

files are only read and often only sequentially. This DFS is

best suited for scenarios in which many large files are

created once but read many times. The GFS is optimized

to run on computing clusters where the nodes are cheap

computers.

Hence, there is a need for precautions against the high

failure rate of individual nodes and data loss. In the

Google file system there can be 100 to 1000 PCs in a

cluster can be used.

1) Chunkserver Architecture Server

• Stores 64 MB file chunks on local disk using standard

Linux filesystem, each with version number and checksum

• Read/write requests specify chunk handle and byte range

• Chunks replicated on configurable number of chunk

servers (default: 3)

• No caching of file data

2) Client

• Issues control (metadata) requests to master server

• Issues data requests directly to chunkservers

• Caches metadata

• Does no caching of data No consistency hence

difficulties among clients Streaming reads (read once)

and append writes (write once) don’t benefit much from

caching at Client

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6265 287

Tools/Technology is to be used

Big Data has emerged because we are living in a society

which makes increasing use of data intensive technologies.

One current feature of big data is the difficulty working

with it using relational databases and desktop

statistics/visualization packages, requiring instead

"massively parallel software running on tens, hundreds, or

even thousands of servers". The various challenges faced

in large data management include – scalability,

unstructured data, accessibility, real time analytics, fault

tolerance and many more. In addition to variations in the

amount of data stored in different sectors, the types of data

generated and stored—i.e., whether the data encodes

video, images, audio, or text/numeric information—also

differ markedly from industry to industry.

Big data requires exceptional technologies to efficiently

process large quantities of data within tolerable elapsed

times. Technologies being applied to big data include

massively parallel processing (MPP) databases, data

mining grids, distributed file systems, distributed

databases, cloud computing platforms, the Internet, and

scalable storage systems. Real or near-real time

information delivery is one of the defining characteristics

of Big Data Analytics. Latency is therefore avoided

whenever and wherever possible. A wide variety of

techniques and technologies has been developed and

adapted to aggregate, manipulate, analyze, and visualize

big data. These techniques and technologies draw from

several fields including statistics, computer science,

applied mathematics, and economics. This means that an

organization that intends to derive value from big data has

to adopt a flexible, multidisciplinary approach.

5. CONCULSION

We propose general, sound methods to transform batch

queries to incremental queries. The first step in our

approach is to transform a query so that it propagates the

join and group-by keys to the query output. This technique

is known as lineage tracking .That way, the values in the

query output are grouped by a key combination, which

corresponds the join and group-by keys used in deriving

these values during query evaluation.

 If we also group the new data in the same way, then

computations on current data can be combined with the

computations on the new data by joining the data on these

keys. This approach requires that we can combine

computations on data that have the same lineage to derive

incremental results. In our framework, this task is

accomplished by transforming a query to a ’monoid

homomorphism’ by extracting the non-homomorphic parts

of the query outwards, using algebraic transformation

rules, and combining them to form an answer function,

which is detached from the rest of the query.

We present a general automated method to convert most

distributed data-analysis queries to incremental stream

processing programs.

• Our methods can handle many forms of queries,

including iterative and nested queries, group-by with

aggregation, and joins on one-to-many relationships.

• We report on a prototype implementation of our

framework using Apache MRQL running on top of

Apache Spark Streaming. We show the effectiveness of

our method through experiments on four queries:

groupBy, join-groupBy, k-means clustering, and

PageRank.

REFERENCES

[1] D. J. Abadi, D. Carney, U. Cetintemel, et al. Aurora: A New Model

and Architecture for Data Stream Management. In VLDB Journal,

12(2):120–139, 2003.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models

and Issues in Data Stream Systems. In Symposium on Principles of

Database Systems (PODS), pages 1–16, 2002.
[3] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs:

Databases with Uncertainty and Lineage. In International Confer-

ence on Very Large Data Bases (VLDB), pages 953–964, 2006.
[4] D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An

Annotation Management System for Relational Databases. In

International Conference on Very Large Data Bases (VLDB), pages
900– 911, 2004.

[5] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin.

Incoop: Mapreduce for Incremental Computations. In ACM Sym-
posium on Cloud Computing (SoCC), 2011.

[6] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin Summingbird: A

Framework for Integrating Batch and Online MapReduce
Computations. In International Conference on Very Large Data

Bases (VLDB), pages 1441–1451, 2014.

[7] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A Recursive
Model for Graph Mining. In Fourth SIAM International

Conferenceon Data Mining (SDM), pages 442–446, 2004.

[8] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J.
C. Platt, J. F. Terwilliger, J. Wernsing. Trill: A High-Performance

Incremental Query Processor for Diverse Analytics. In International

Conference on Very Large Data Bases (VLDB), pages 401–412,
2014.

[9] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.

Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F.
Reiss, and M. Shah. TelegraphCQ: Continuous Data flow

Processing for an UncertainWorld. In Conference on Innovative

Data System Research (CIDR), 2003.
[10] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,

and R. Sears. Mapreduce Online. In USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 10(4),
2010.

[11] Y. Cui and J.Widom. Lineage Tracing for General DataWarehouse
Transformations. In International Conference on Very Large Data

Bases (VLDB), pages 471–480, 2001.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. In Symposium on Operating System Design and

Implementation (OSDI), 2004.

[13] P. Desikan, N. Pathak, J. Srivastava, and V. Kumar Incremental
PageRank Computation on Evolving Graphs. In International

conference on World Wide Web (WWW), pages 1094–1095, 2005.

[14] L. Fegaras. Incremental Stream Processing of Nested-Relational
Queries. In International Conference on Database and Expert

Systems Applications (DEXA), September 2016. Available at

http://lambda.uta.edu/incr-dexa16.pdf.
[15] L. Fegaras, C. Li, U. Gupta, and J. J. Philip. XML Query

Optimization in Map-Reduce. In International Workshop on the

Web and Databases (WebDB), 2011.
[16] L. Fegaras, C. Li, and U. Gupta. An Optimization Framework for

Map-Reduce Queries. In International Conference on Extending

Database Technology (EDBT), pages 26–37, 2012.

